Papers
Topics
Authors
Recent
2000 character limit reached

Generalized Kantorovich-Rubinstein Duality beyond Hausdorff and Kantorovich (2510.23552v1)

Published 27 Oct 2025 in cs.LO and math.PR

Abstract: The classical Kantorovich-Rubinstein duality guarantees coincidence between metrics on the space of probability distributions defined on the one hand via transport plans (couplings) and on the other hand via price functions. Both constructions have been lifted to the level of generality of set functors, with the coupling-based construction referred to as the Wasserstein lifting, and the price-function-based construction as the Kantorovich lifting, both based on a choice of quantitative modalities for the given functor. It is known that every Wasserstein lifting can be expressed as a Kantorovich lifting; however, the latter in general needs to use additional modalities. We give an example showing that this cannot be avoided in general. We refer to cases in which the same modalities can be used as satisfying the generalized Kantorovich-Rubinstein duality. We establish the generalized Kantorovich-Rubinstein duality in this sense for two important cases: The L\'evy-Prokhorov distance on distributions, which finds wide-spread applications in machine learning due to its favourable stability properties, and the standard metric on convex sets of distributions that arises by combining the Hausdorff and Wasserstein distances.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.