Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

CURVETE: Curriculum Learning and Progressive Self-supervised Training for Medical Image Classification (2510.23442v1)

Published 27 Oct 2025 in cs.CV

Abstract: Identifying high-quality and easily accessible annotated samples poses a notable challenge in medical image analysis. Transfer learning techniques, leveraging pre-training data, offer a flexible solution to this issue. However, the impact of fine-tuning diminishes when the dataset exhibits an irregular distribution between classes. This paper introduces a novel deep convolutional neural network, named Curriculum Learning and Progressive Self-supervised Training (CURVETE). CURVETE addresses challenges related to limited samples, enhances model generalisability, and improves overall classification performance. It achieves this by employing a curriculum learning strategy based on the granularity of sample decomposition during the training of generic unlabelled samples. Moreover, CURVETE address the challenge of irregular class distribution by incorporating a class decomposition approach in the downstream task. The proposed method undergoes evaluation on three distinct medical image datasets: brain tumour, digital knee x-ray, and Mini-DDSM datasets. We investigate the classification performance using a generic self-supervised sample decomposition approach with and without the curriculum learning component in training the pretext task. Experimental results demonstrate that the CURVETE model achieves superior performance on test sets with an accuracy of 96.60% on the brain tumour dataset, 75.60% on the digital knee x-ray dataset, and 93.35% on the Mini-DDSM dataset using the baseline ResNet-50. Furthermore, with the baseline DenseNet-121, it achieved accuracies of 95.77%, 80.36%, and 93.22% on the brain tumour, digital knee x-ray, and Mini-DDSM datasets, respectively, outperforming other training strategies.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.