Papers
Topics
Authors
Recent
2000 character limit reached

Decoupled Solution for Composite Sparse-plus-Smooth Inverse Problems (2510.23322v1)

Published 27 Oct 2025 in math.OC

Abstract: We consider composite linear inverse problems where the signal to recover is modeled as a sum of two functions. We study a variational framework formulated as an optimization problem over the pairs of components using two regularization terms, each of them acting on a different part of the solution. The specificity of our work is to study the case where one component is regularized with an atomic norm over a Banach space, which is known to promote sparse reconstruction, while the other is regularized with a quadratic norm over a Hilbert space, which promotes smooth solution. We show how this composite optimization problem can be reduced to an optimization problem over the Banach space component only up to a linear problem. This reveals a decoupling between the two components, allowing for a new composite representer theorem. It naturally induces a decoupled numerical procedure to solve the composite optimization problem. We exemplify our main result with a composite deconvolution problem of Dirac recovery over a smooth background. In this setting, we illustrate the relevance of a composite model and show a significant temporal gain on signal reconstruction, which results from our decoupled algorithmic approach.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.