Papers
Topics
Authors
Recent
2000 character limit reached

DecoDINO: 3D Human-Scene Contact Prediction with Semantic Classification (2510.23203v1)

Published 27 Oct 2025 in cs.CV

Abstract: Accurate vertex-level contact prediction between humans and surrounding objects is a prerequisite for high fidelity human object interaction models used in robotics, AR/VR, and behavioral simulation. DECO was the first in the wild estimator for this task but is limited to binary contact maps and struggles with soft surfaces, occlusions, children, and false-positive foot contacts. We address these issues and introduce DecoDINO, a three-branch network based on DECO's framework. It uses two DINOv2 ViT-g/14 encoders, class-balanced loss weighting to reduce bias, and patch-level cross-attention for improved local reasoning. Vertex features are finally passed through a lightweight MLP with a softmax to assign semantic contact labels. We also tested a vision-LLM (VLM) to integrate text features, but the simpler architecture performed better and was used instead. On the DAMON benchmark, DecoDINO (i) raises the binary-contact F1 score by 7$\%$, (ii) halves the geodesic error, and (iii) augments predictions with object-level semantic labels. Ablation studies show that LoRA fine-tuning and the dual encoders are key to these improvements. DecoDINO outperformed the challenge baseline in both tasks of the DAMON Challenge. Our code is available at https://github.com/DavidePasero/deco/tree/main.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.