Matching Reverberant Speech Through Learned Acoustic Embeddings and Feedback Delay Networks (2510.23158v1)
Abstract: Reverberation conveys critical acoustic cues about the environment, supporting spatial awareness and immersion. For auditory augmented reality (AAR) systems, generating perceptually plausible reverberation in real time remains a key challenge, especially when explicit acoustic measurements are unavailable. We address this by formulating blind estimation of artificial reverberation parameters as a reverberant signal matching task, leveraging a learned room-acoustic prior. Furthermore, we propose a feedback delay network (FDN) structure that reproduces both frequency-dependent decay times and the direct-to-reverberation ratio of a target space. Experimental evaluation against a leading automatic FDN tuning method demonstrates improvements in estimated room-acoustic parameters and perceptual plausibility of artificial reverberant speech. These results highlight the potential of our approach for efficient, perceptually consistent reverberation rendering in AAR applications.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.