Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 171 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

AG-Fusion: adaptive gated multimodal fusion for 3d object detection in complex scenes (2510.23151v1)

Published 27 Oct 2025 in cs.CV and cs.LG

Abstract: Multimodal camera-LiDAR fusion technology has found extensive application in 3D object detection, demonstrating encouraging performance. However, existing methods exhibit significant performance degradation in challenging scenarios characterized by sensor degradation or environmental disturbances. We propose a novel Adaptive Gated Fusion (AG-Fusion) approach that selectively integrates cross-modal knowledge by identifying reliable patterns for robust detection in complex scenes. Specifically, we first project features from each modality into a unified BEV space and enhance them using a window-based attention mechanism. Subsequently, an adaptive gated fusion module based on cross-modal attention is designed to integrate these features into reliable BEV representations robust to challenging environments. Furthermore, we construct a new dataset named Excavator3D (E3D) focusing on challenging excavator operation scenarios to benchmark performance in complex conditions. Our method not only achieves competitive performance on the standard KITTI dataset with 93.92% accuracy, but also significantly outperforms the baseline by 24.88% on the challenging E3D dataset, demonstrating superior robustness to unreliable modal information in complex industrial scenes.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: