Identification, Estimation, and Inference in Two-Sided Interaction Models (2510.22884v1)
Abstract: This paper studies a class of models for two-sided interactions, where outcomes depend on latent characteristics of two distinct agent types. Models in this class have two core elements: the matching network, which records which agent pairs interact, and the interaction function, which maps latent characteristics of these agents to outcomes and determines the role of complementarities. I introduce the Tukey model, which captures complementarities with a single interaction parameter, along with two extensions that allow richer complementarity patterns. First, I establish an identification trade-off between the flexibility of the interaction function and the density of the matching network: the Tukey model is identified under mild conditions, whereas the more flexible extensions require dense networks that are rarely observed in applications. Second, I propose a cycle-based estimator for the Tukey interaction parameter and show that it is consistent and asymptotically normal even when the network is sparse. Third, I use its asymptotic distribution to construct a formal test of no complementarities. Finally, an empirical illustration shows that the Tukey model recovers economically meaningful complementarities.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.