Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Composite goodness-of-fit test with the Kernel Stein Discrepancy and a bootstrap for degenerate U-statistics with estimated parameters (2510.22792v1)

Published 26 Oct 2025 in math.ST and stat.TH

Abstract: This paper formally derives the asymptotic distribution of a goodness-of-fit test based on the Kernel Stein Discrepancy introduced in (Oscar Key et al., "Composite Goodness-of-fit Tests with Kernels", Journal of Machine Learning Research 26.51 (2025), pp. 1-60). The test enables the simultaneous estimation of the optimal parameter within a parametric family of candidate models. Its asymptotic distribution is shown to be a weighted sum of infinitely many $\chi2$-distributed random variables plus an additional disturbance term, which is due to the parameter estimation. Further, we provide a general framework to bootstrap degenerate parameter-dependent $U$-statistics and use it to derive a new Kernel Stein Discrepancy composite goodness-of-fit test.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: