Papers
Topics
Authors
Recent
2000 character limit reached

Atlas Urban Index: A VLM-Based Approach for Spatially and Temporally Calibrated Urban Development Monitoring (2510.22702v1)

Published 26 Oct 2025 in cs.AI, cs.CV, cs.ET, and eess.IV

Abstract: We introduce the {\em Atlas Urban Index} (AUI), a metric for measuring urban development computed using Sentinel-2 \citep{spoto2012sentinel2} satellite imagery. Existing approaches, such as the {\em Normalized Difference Built-up Index} (NDBI), often struggle to accurately capture urban development due to factors like atmospheric noise, seasonal variation, and cloud cover. These limitations hinder large-scale monitoring of human development and urbanization. To address these challenges, we propose an approach that leverages {\em Vision-LLMs }(VLMs) to provide a development score for regions. Specifically, we collect a time series of Sentinel-2 images for each region. Then, we further process the images within fixed time windows to get an image with minimal cloud cover, which serves as the representative image for that time window. To ensure consistent scoring, we adopt two strategies: (i) providing the VLM with a curated set of reference images representing different levels of urbanization, and (ii) supplying the most recent past image to both anchor temporal consistency and mitigate cloud-related noise in the current image. Together, these components enable AUI to overcome the challenges of traditional urbanization indices and produce more reliable and stable development scores. Our qualitative experiments on Bangalore suggest that AUI outperforms standard indices such as NDBI.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.