Papers
Topics
Authors
Recent
2000 character limit reached

DAMap: Distance-aware MapNet for High Quality HD Map Construction

Published 26 Oct 2025 in cs.CV | (2510.22675v1)

Abstract: Predicting High-definition (HD) map elements with high quality (high classification and localization scores) is crucial to the safety of autonomous driving vehicles. However, current methods perform poorly in high quality predictions due to inherent task misalignment. Two main factors are responsible for misalignment: 1) inappropriate task labels due to one-to-many matching queries sharing the same labels, and 2) sub-optimal task features due to task-shared sampling mechanism. In this paper, we reveal two inherent defects in current methods and develop a novel HD map construction method named DAMap to address these problems. Specifically, DAMap consists of three components: Distance-aware Focal Loss (DAFL), Hybrid Loss Scheme (HLS), and Task Modulated Deformable Attention (TMDA). The DAFL is introduced to assign appropriate classification labels for one-to-many matching samples. The TMDA is proposed to obtain discriminative task-specific features. Furthermore, the HLS is proposed to better utilize the advantages of the DAFL. We perform extensive experiments and consistently achieve performance improvement on the NuScenes and Argoverse2 benchmarks under different metrics, baselines, splits, backbones, and schedules. Code will be available at https://github.com/jpdong-xjtu/DAMap.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.