Pedagogy-driven Evaluation of Generative AI-powered Intelligent Tutoring Systems (2510.22581v1)
Abstract: The interdisciplinary research domain of Artificial Intelligence in Education (AIED) has a long history of developing Intelligent Tutoring Systems (ITSs) by integrating insights from technological advancements, educational theories, and cognitive psychology. The remarkable success of generative AI (GenAI) models has accelerated the development of LLM-powered ITSs, which have potential to imitate human-like, pedagogically rich, and cognitively demanding tutoring. However, the progress and impact of these systems remain largely untraceable due to the absence of reliable, universally accepted, and pedagogy-driven evaluation frameworks and benchmarks. Most existing educational dialogue-based ITS evaluations rely on subjective protocols and non-standardized benchmarks, leading to inconsistencies and limited generalizability. In this work, we take a step back from mainstream ITS development and provide comprehensive state-of-the-art evaluation practices, highlighting associated challenges through real-world case studies from careful and caring AIED research. Finally, building on insights from previous interdisciplinary AIED research, we propose three practical, feasible, and theoretically grounded research directions, rooted in learning science principles and aimed at establishing fair, unified, and scalable evaluation methodologies for ITSs.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.