Distributionally Robust Dynamic Structural Estimation: Serial Dependence and Sensitivity Analysis (2510.22347v1)
Abstract: Distributional assumptions that discipline serially correlated latent variables play a central role in dynamic structural models. We propose a framework to quantify the sensitivity of scalar parameters of interest (e.g., welfare, elasticity) to such distributional assumptions. We derive bounds on the scalar parameter by perturbing a reference distribution, while imposing a stationarity condition for time-homogeneous models or a Markovian condition for time-inhomogeneous models. The bounds are the solutions to optimization problems, for which we derive a computationally tractable dual formulation. We establish consistency, convergence rate, and asymptotic distribution for the estimator of the bounds. We demonstrate the approach with two applications: an infinite-horizon dynamic demand model for new cars in the United Kingdom, Germany, and France, and a finite-horizon dynamic labor supply model for taxi drivers in New York City. In the car application, perturbed price elasticities deviate by at most 15.24% from the reference elasticities, while perturbed estimates of consumer surplus from an additional $3,000 electric vehicle subsidy vary by up to 102.75%. In the labor supply application, the perturbed Frisch labor supply elasticity deviates by at most 76.83% for weekday drivers and 42.84% for weekend drivers.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.