Papers
Topics
Authors
Recent
2000 character limit reached

LacMaterial: Large Language Models as Analogical Chemists for Materials Discovery (2510.22312v1)

Published 25 Oct 2025 in cs.LG and cs.AI

Abstract: Analogical reasoning, the transfer of relational structures across contexts (e.g., planet is to sun as electron is to nucleus), is fundamental to scientific discovery. Yet human insight is often constrained by domain expertise and surface-level biases, limiting access to deeper, structure-driven analogies both within and across disciplines. LLMs, trained on vast cross-domain data, present a promising yet underexplored tool for analogical reasoning in science. Here, we demonstrate that LLMs can generate novel battery materials by (1) retrieving cross-domain analogs and analogy-guided exemplars to steer exploration beyond conventional dopant substitutions, and (2) constructing in-domain analogical templates from few labeled examples to guide targeted exploitation. These explicit analogical reasoning strategies yield candidates outside established compositional spaces and outperform standard prompting baselines. Our findings position LLMs as interpretable, expert-like hypothesis generators that leverage analogy-driven generalization for scientific innovation.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.