Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

SteerX: Disentangled Steering for LLM Personalization (2510.22256v1)

Published 25 Oct 2025 in cs.CL

Abstract: LLMs have shown remarkable success in recent years, enabling a wide range of applications, including intelligent assistants that support users' daily life and work. A critical factor in building such assistants is personalizing LLMs, as user preferences and needs vary widely. Activation steering, which directly leverages directions representing user preference in the LLM activation space to adjust its behavior, offers a cost-effective way to align the model's outputs with individual users. However, existing methods rely on all historical data to compute the steering vector, ignoring that not all content reflects true user preferences, which undermines the personalization signal. To address this, we propose SteerX, a disentangled steering method that isolates preference-driven components from preference-agnostic components. Grounded in causal inference theory, SteerX estimates token-level causal effects to identify preference-driven tokens, transforms these discrete signals into a coherent description, and then leverages them to steer personalized LLM generation. By focusing on the truly preference-driven information, SteerX produces more accurate activation steering vectors and enhances personalization. Experiments on two representative steering backbone methods across real-world datasets demonstrate that SteerX consistently enhances steering vector quality, offering a practical solution for more effective LLM personalization.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.