Papers
Topics
Authors
Recent
2000 character limit reached

PACR: Progressively Ascending Confidence Reward for LLM Reasoning (2510.22255v1)

Published 25 Oct 2025 in cs.AI and cs.CL

Abstract: Reinforcement Learning with Verifiable Rewards (RLVR) has significantly improved LLM reasoning, but its sparse, outcome-based reward provides no guidance for intermediate steps, slowing exploration. We propose Progressively Ascending Confidence Reward (PACR), a dense, model-intrinsic reward computed directly from the model's evolving belief in the correct answer. PACR encodes the inductive bias that, along a well-formed reasoning trajectory, the probability of the ground-truth answer should have a generally ascending trend. We provide empirical and theoretical analysis validating that such an inductive bias constrains the exploration search space to regions richer in logically sound reasoning. We demonstrate that PACR accelerates exploration, reaches reward saturation with fewer trajectories, and yields improvements on multiple benchmarks. Our results suggest that dense, model-intrinsic shaping signals can make RLVR training more effective and reliable.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 5 likes about this paper.