Papers
Topics
Authors
Recent
2000 character limit reached

Simplifying Knowledge Transfer in Pretrained Models

Published 25 Oct 2025 in cs.LG and cs.CV | (2510.22208v1)

Abstract: Pretrained models are ubiquitous in the current deep learning landscape, offering strong results on a broad range of tasks. Recent works have shown that models differing in various design choices exhibit categorically diverse generalization behavior, resulting in one model grasping distinct data-specific insights unavailable to the other. In this paper, we propose to leverage large publicly available model repositories as an auxiliary source of model improvements. We introduce a data partitioning strategy where pretrained models autonomously adopt either the role of a student, seeking knowledge, or that of a teacher, imparting knowledge. Experiments across various tasks demonstrate the effectiveness of our proposed approach. In image classification, we improved the performance of ViT-B by approximately 1.4% through bidirectional knowledge transfer with ViT-T. For semantic segmentation, our method boosted all evaluation metrics by enabling knowledge transfer both within and across backbone architectures. In video saliency prediction, our approach achieved a new state-of-the-art. We further extend our approach to knowledge transfer between multiple models, leading to considerable performance improvements for all model participants.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.