Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

MMbeddings: Parameter-Efficient, Low-Overfitting Probabilistic Embeddings Inspired by Nonlinear Mixed Models (2510.22198v1)

Published 25 Oct 2025 in stat.ML and cs.LG

Abstract: We present MMbeddings, a probabilistic embedding approach that reinterprets categorical embeddings through the lens of nonlinear mixed models, effectively bridging classical statistical theory with modern deep learning. By treating embeddings as latent random effects within a variational autoencoder framework, our method substantially decreases the number of parameters -- from the conventional embedding approach of cardinality $\times$ embedding dimension, which quickly becomes infeasible with large cardinalities, to a significantly smaller, cardinality-independent number determined primarily by the encoder architecture. This reduction dramatically mitigates overfitting and computational burden in high-cardinality settings. Extensive experiments on simulated and real datasets, encompassing collaborative filtering and tabular regression tasks using varied architectures, demonstrate that MMbeddings consistently outperforms traditional embeddings, underscoring its potential across diverse machine learning applications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 16 likes.

Upgrade to Pro to view all of the tweets about this paper: