Papers
Topics
Authors
Recent
2000 character limit reached

Penalizing Length: Uncovering Systematic Bias in Quality Estimation Metrics (2510.22028v1)

Published 24 Oct 2025 in cs.CL

Abstract: Quality Estimation (QE) metrics are vital in machine translation for reference-free evaluation and as a reward signal in tasks like reinforcement learning. However, the prevalence and impact of length bias in QE have been underexplored. Through a systematic study of top-performing regression-based and LLM-as-a-Judge QE metrics across 10 diverse language pairs, we reveal two critical length biases: First, QE metrics consistently over-predict errors with increasing translation length, even for high-quality, error-free texts. Second, they exhibit a preference for shorter translations when multiple candidates are available for the same source text. These inherent length biases risk unfairly penalizing longer, correct translations and can lead to sub-optimal decision-making in applications such as QE reranking and QE guided reinforcement learning. To mitigate this, we propose two strategies: (a) applying length normalization during model training, and (b) incorporating reference texts during evaluation. Both approaches were found to effectively reduce the identified length bias.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.