Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Enabling Robust In-Context Memory and Rapid Task Adaptation in Transformers with Hebbian and Gradient-Based Plasticity (2510.21908v1)

Published 24 Oct 2025 in cs.NE, cs.AI, and cs.LG

Abstract: LLMs display in-context learning as an emergent effect of scale, but they rely on static weights during inference. In contrast, biological systems continually adapt via synaptic plasticity. We investigate whether explicit, biologically inspired plasticity can endow Transformers with faster in-sequence adaptation. To this end, we augment decoder-only Transformers with fast-weight modules updated either by (i) a neuromodulated Hebbian rule or (ii) the gradient-based plasticity mechanism of Duan et al. (2023). Across copying, regression, and few-shot classification tasks (CIFAR-FS, Omniglot), Hebbian plasticity consistently achieves lower loss and stronger few-shot generalization, while gradient-based updates perform best on long-horizon credit assignment. When associations are short and linearly separable, static weights suffice, defining a clear boundary condition for when plasticity helps. Analysis of learned modulatory signals reveals that gradient-based rules maintain large, persistent updates, whereas Hebbian plasticity is sharply gated around salient events. Together, these results show that explicit plasticity complements attention by enabling rapid, task-specific adaptation, and clarify when different plasticity mechanisms are most effective.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.