Papers
Topics
Authors
Recent
2000 character limit reached

Framework for Machine Evaluation of Reasoning Completeness in Large Language Models For Classification Tasks (2510.21884v1)

Published 23 Oct 2025 in cs.CL and cs.AI

Abstract: The growing adoption of ML in sensitive domains has heightened the demand for transparent and interpretable artificial intelligence. LLMs are increasingly capable of producing natural language explanations, yet it remains unclear whether these rationales faithfully capture the predictive signals that underlie decisions. This paper introduces RACE-Reasoning Alignment for Completeness of Explanations, a systematic framework to evaluate the alignment between LLM-generated explanations and interpretable feature importance scores derived from a logistic regression baseline. We analyze four widely used text classification datasets-WIKI ONTOLOGY, AG NEWS, IMDB, and GOEMOTIONS-and compare LLM rationales against top-ranked supporting and contradicting lexical features. To capture alignment at multiple levels of granularity, RACE implements token-aware, exact string, and edit-distance matching techniques. Empirical results reveal a consistent asymmetry: correct predictions exhibit higher coverage of supporting features, while incorrect predictions are associated with elevated coverage of contradicting features. Edit-distance matching further uncovers paraphrastic overlaps, boosting coverage while preserving this asymmetry. These findings demonstrate that LLM rationales combine both surface-level and flexible evidence reuse, yet can also amplify misleading cues in error cases. RACE provides new insights into the faithfulness of LLM explanations and establishes a quantitative basis for evaluating reasoning completeness in neural LLMs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.