Semantic Relation-Enhanced CLIP Adapter for Domain Adaptive Zero-Shot Learning (2510.21808v1)
Abstract: The high cost of data annotation has spurred research on training deep learning models in data-limited scenarios. Existing paradigms, however, fail to balance cross-domain transfer and cross-category generalization, giving rise to the demand for Domain-Adaptive Zero-Shot Learning (DAZSL). Although vision-LLMs (e.g., CLIP) have inherent advantages in the DAZSL field, current studies do not fully exploit their potential. Applying CLIP to DAZSL faces two core challenges: inefficient cross-category knowledge transfer due to the lack of semantic relation guidance, and degraded cross-modal alignment during target domain fine-tuning. To address these issues, we propose a Semantic Relation-Enhanced CLIP (SRE-CLIP) Adapter framework, integrating a Semantic Relation Structure Loss and a Cross-Modal Alignment Retention Strategy. As the first CLIP-based DAZSL method, SRE-CLIP achieves state-of-the-art performance on the I2AwA and I2WebV benchmarks, significantly outperforming existing approaches.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.