Papers
Topics
Authors
Recent
2000 character limit reached

AI-Boosted Video Annotation: Assessing the Process Enhancement (2510.21798v1)

Published 20 Oct 2025 in cs.CV, cs.HC, and cs.LG

Abstract: We explore the enhancement of Human-in-the-Loop video annotation by integrating automatic capabilities to ease the task for annotators and assess their performance. The research delves into the practical implications of the annotation processes, the integration of AI components, and the evaluation of its outcomes. We analyze their impact on efficiency, accuracy, and overall annotation quality. Focusing on the Human-in-the-Loop for video annotation tasks, we implemented a single-iteration scheme using Label Studio and AI-powered zero-shot pre-annotations. Using this framework, we designed a test based on the annotation of the UCF-Crime dataset to discriminate between normal and abnormal activities in video footage. Our results evidence how automatic AI-based pre-annotation can streamline the video annotation workflow, empowering human annotators and optimizing the overall pipeline. Using the pre-annotated data, we observed a 35% reduction in the annotation time for 70% of the annotators with similar quality annotations, compared to the traditional manual annotation task. Results are consistent with asset duration and complexity. We also observed that while annotators rapidly learned to use the tool, the produced annotations are more coherent among annotators and better match the natural clustering of the video frames.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.