Papers
Topics
Authors
Recent
2000 character limit reached

2D_3D Feature Fusion via Cross-Modal Latent Synthesis and Attention Guided Restoration for Industrial Anomaly Detection (2510.21793v1)

Published 20 Oct 2025 in cs.CV, cs.AI, and eess.IV

Abstract: Industrial anomaly detection (IAD) increasingly benefits from integrating 2D and 3D data, but robust cross-modal fusion remains challenging. We propose a novel unsupervised framework, Multi-Modal Attention-Driven Fusion Restoration (MAFR), which synthesises a unified latent space from RGB images and point clouds using a shared fusion encoder, followed by attention-guided, modality-specific decoders. Anomalies are localised by measuring reconstruction errors between input features and their restored counterparts. Evaluations on the MVTec 3D-AD and Eyecandies benchmarks demonstrate that MAFR achieves state-of-the-art results, with a mean I-AUROC of 0.972 and 0.901, respectively. The framework also exhibits strong performance in few-shot learning settings, and ablation studies confirm the critical roles of the fusion architecture and composite loss. MAFR offers a principled approach for fusing visual and geometric information, advancing the robustness and accuracy of industrial anomaly detection. Code is available at https://github.com/adabrh/MAFR

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 3 likes about this paper.