Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 119 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 423 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Your Dense Retriever is Secretly an Expeditious Reasoner (2510.21727v1)

Published 27 Sep 2025 in cs.IR, cs.AI, and cs.LG

Abstract: Dense retrievers enhance retrieval by encoding queries and documents into continuous vectors, but they often struggle with reasoning-intensive queries. Although LLMs can reformulate queries to capture complex reasoning, applying them universally incurs significant computational cost. In this work, we propose Adaptive Query Reasoning (AdaQR), a hybrid query rewriting framework. Within this framework, a Reasoner Router dynamically directs each query to either fast dense reasoning or deep LLM reasoning. The dense reasoning is achieved by the Dense Reasoner, which performs LLM-style reasoning directly in the embedding space, enabling a controllable trade-off between efficiency and accuracy. Experiments on large-scale retrieval benchmarks BRIGHT show that AdaQR reduces reasoning cost by 28% while preserving-or even improving-retrieval performance by 7%.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: