Papers
Topics
Authors
Recent
Search
2000 character limit reached

On Thin Ice: Towards Explainable Conservation Monitoring via Attribution and Perturbations

Published 24 Oct 2025 in cs.CV and cs.AI | (2510.21689v1)

Abstract: Computer vision can accelerate ecological research and conservation monitoring, yet adoption in ecology lags in part because of a lack of trust in black-box neural-network-based models. We seek to address this challenge by applying post-hoc explanations to provide evidence for predictions and document limitations that are important to field deployment. Using aerial imagery from Glacier Bay National Park, we train a Faster R-CNN to detect pinnipeds (harbor seals) and generate explanations via gradient-based class activation mapping (HiResCAM, LayerCAM), local interpretable model-agnostic explanations (LIME), and perturbation-based explanations. We assess explanations along three axes relevant to field use: (i) localization fidelity: whether high-attribution regions coincide with the animal rather than background context; (ii) faithfulness: whether deletion/insertion tests produce changes in detector confidence; and (iii) diagnostic utility: whether explanations reveal systematic failure modes. Explanations concentrate on seal torsos and contours rather than surrounding ice/rock, and removal of the seals reduces detection confidence, providing model-evidence for true positives. The analysis also uncovers recurrent error sources, including confusion between seals and black ice and rocks. We translate these findings into actionable next steps for model development, including more targeted data curation and augmentation. By pairing object detection with post-hoc explainability, we can move beyond "black-box" predictions toward auditable, decision-supporting tools for conservation monitoring.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.