Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Contribution of task-irrelevant stimuli to drift of neural representations (2510.21588v1)

Published 24 Oct 2025 in q-bio.NC and cs.LG

Abstract: Biological and artificial learners are inherently exposed to a stream of data and experience throughout their lifetimes and must constantly adapt to, learn from, or selectively ignore the ongoing input. Recent findings reveal that, even when the performance remains stable, the underlying neural representations can change gradually over time, a phenomenon known as representational drift. Studying the different sources of data and noise that may contribute to drift is essential for understanding lifelong learning in neural systems. However, a systematic study of drift across architectures and learning rules, and the connection to task, are missing. Here, in an online learning setup, we characterize drift as a function of data distribution, and specifically show that the learning noise induced by task-irrelevant stimuli, which the agent learns to ignore in a given context, can create long-term drift in the representation of task-relevant stimuli. Using theory and simulations, we demonstrate this phenomenon both in Hebbian-based learning -- Oja's rule and Similarity Matching -- and in stochastic gradient descent applied to autoencoders and a supervised two-layer network. We consistently observe that the drift rate increases with the variance and the dimension of the data in the task-irrelevant subspace. We further show that this yields different qualitative predictions for the geometry and dimension-dependency of drift than those arising from Gaussian synaptic noise. Overall, our study links the structure of stimuli, task, and learning rule to representational drift and could pave the way for using drift as a signal for uncovering underlying computation in the brain.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: