Leveraging Classical Algorithms for Graph Neural Networks (2510.21574v1)
Abstract: Neural networks excel at processing unstructured data but often fail to generalise out-of-distribution, whereas classical algorithms guarantee correctness but lack flexibility. We explore whether pretraining Graph Neural Networks (GNNs) on classical algorithms can improve their performance on molecular property prediction tasks from the Open Graph Benchmark: ogbg-molhiv (HIV inhibition) and ogbg-molclintox (clinical toxicity). GNNs trained on 24 classical algorithms from the CLRS Algorithmic Reasoning Benchmark are used to initialise and freeze selected layers of a second GNN for molecular prediction. Compared to a randomly initialised baseline, the pretrained models achieve consistent wins or ties, with the Segments Intersect algorithm pretraining yielding a 6% absolute gain on ogbg-molhiv and Dijkstra pretraining achieving a 3% gain on ogbg-molclintox. These results demonstrate embedding classical algorithmic priors into GNNs provides useful inductive biases, boosting performance on complex, real-world graph data.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.