Papers
Topics
Authors
Recent
2000 character limit reached

$α$-LoRA: Effective Fine-Tuning via Base Model Rescaling (2510.21345v1)

Published 24 Oct 2025 in cs.LG, cs.AI, and stat.ML

Abstract: Fine-tuning has proven to be highly effective in adapting pre-trained models to perform better on new desired tasks with minimal data samples. Among the most widely used approaches are reparameterization methods, which update a target module by augmenting its frozen weight matrix with an additional trainable weight matrix. The most prominent example is Low Rank Adaption (LoRA), which gained significant attention in recent years. In this paper, we introduce a new class of reparameterization methods for transfer learning, designed to enhance the generalization ability of fine-tuned models. We establish the effectiveness of our approach in a high-dimensional binary classification setting using tools from Random Matrix Theory, and further validate our theoretical findings through more realistic experiments, such as fine-tuning LLMs.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.