Papers
Topics
Authors
Recent
2000 character limit reached

CausalRec: A CausalBoost Attention Model for Sequential Recommendation (2510.21333v1)

Published 24 Oct 2025 in cs.IR and cs.AI

Abstract: Recent advances in correlation-based sequential recommendation systems have demonstrated substantial success. Specifically, the attention-based model outperforms other RNN-based and Markov chains-based models by capturing both short- and long-term dependencies more effectively. However, solely focusing on item co-occurrences overlooks the underlying motivations behind user behaviors, leading to spurious correlations and potentially inaccurate recommendations. To address this limitation, we present a novel framework that integrates causal attention for sequential recommendation, CausalRec. It incorporates a causal discovery block and a CausalBooster. The causal discovery block learns the causal graph in user behavior sequences, and we provide a theory to guarantee the identifiability of the learned causal graph. The CausalBooster utilizes the discovered causal graph to refine the attention mechanism, prioritizing behaviors with causal significance. Experimental evaluations on real-world datasets indicate that CausalRec outperforms several state-of-the-art methods, with average improvements of 7.21% in Hit Rate (HR) and 8.65% in Normalized Discounted Cumulative Gain (NDCG). To the best of our knowledge, this is the first model to incorporate causality through the attention mechanism in sequential recommendation, demonstrating the value of causality in generating more accurate and reliable recommendations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 8 likes.

Upgrade to Pro to view all of the tweets about this paper: