Typoglycemia under the Hood: Investigating Language Models' Understanding of Scrambled Words (2510.21326v1)
Abstract: Research in linguistics has shown that humans can read words with internally scrambled letters, a phenomenon recently dubbed typoglycemia. Some specific NLP models have recently been proposed that similarly demonstrate robustness to such distortions by ignoring the internal order of characters by design. This raises a fundamental question: how can models perform well when many distinct words (e.g., form and from) collapse into identical representations under typoglycemia? Our work, focusing exclusively on the English language, seeks to shed light on the underlying aspects responsible for this robustness. We hypothesize that the main reasons have to do with the fact that (i) relatively few English words collapse under typoglycemia, and that (ii) collapsed words tend to occur in contexts so distinct that disambiguation becomes trivial. In our analysis, we (i) analyze the British National Corpus to quantify word collapse and ambiguity under typoglycemia, (ii) evaluate BERT's ability to disambiguate collapsing forms, and (iii) conduct a probing experiment by comparing variants of BERT trained from scratch on clean versus typoglycemic Wikipedia text; our results reveal that the performance degradation caused by scrambling is smaller than expected.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.