Papers
Topics
Authors
Recent
2000 character limit reached

Unsplittable Cost Flows from Unweighted Error-Bounded Variants (2510.21287v1)

Published 24 Oct 2025 in cs.DS and cs.DM

Abstract: A famous conjecture of Goemans on single-source unsplittable flows states that one can turn any fractional flow into an unsplittable one of no higher cost, while increasing the load on any arc by at most the maximum demand. Despite extensive work on the topic, only limited progress has been made. Recently, Morell and Skutella suggested an alternative conjecture, stating that one can turn any fractional flow into an unsplittable one without changing the load on any arc by more than the maximum demand. We show that their conjecture implies Goemans' conjecture (with a violation of twice the maximum demand). To this end, we generalize a technique of Linhares and Swamy, used to obtain a low-cost chain-constrained spanning tree from an algorithm without cost guarantees. Whereas Linhares and Swamy's proof relies on Langrangian duality, we provide a very simple elementary proof of a generalized version, which we hope to be of independent interest. Moreover, we show how this technique can also be used in the context of the weighted ring loading problem, showing that cost-unaware approximation algorithms can be transformed into approximation algorithms with additional cost guarantees.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.