Papers
Topics
Authors
Recent
2000 character limit reached

PINN Balls: Scaling Second-Order Methods for PINNs with Domain Decomposition and Adaptive Sampling (2510.21262v1)

Published 24 Oct 2025 in cs.LG

Abstract: Recent advances in Scientific Machine Learning have shown that second-order methods can enhance the training of Physics-Informed Neural Networks (PINNs), making them a suitable alternative to traditional numerical methods for Partial Differential Equations (PDEs). However, second-order methods induce large memory requirements, making them scale poorly with the model size. In this paper, we define a local Mixture of Experts (MoE) combining the parameter-efficiency of ensemble models and sparse coding to enable the use of second-order training. Our model -- \textsc{PINN Balls} -- also features a fully learnable domain decomposition structure, achieved through the use of Adversarial Adaptive Sampling (AAS), which adapts the DD to the PDE and its domain. \textsc{PINN Balls} achieves better accuracy than the state-of-the-art in scientific machine learning, while maintaining invaluable scalability properties and drawing from a sound theoretical background.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.