Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 109 tok/s
Gemini 3.0 Pro 52 tok/s Pro
Gemini 2.5 Flash 159 tok/s Pro
Kimi K2 203 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

TokenCLIP: Token-wise Prompt Learning for Zero-shot Anomaly Detection (2510.21171v1)

Published 24 Oct 2025 in cs.CV

Abstract: Adapting CLIP for anomaly detection on unseen objects has shown strong potential in a zero-shot manner. However, existing methods typically rely on a single textual space to align with visual semantics across diverse objects and domains. The indiscriminate alignment hinders the model from accurately capturing varied anomaly semantics. We propose TokenCLIP, a token-wise adaptation framework that enables dynamic alignment between visual and learnable textual spaces for fine-grained anomaly learning. Rather than mapping all visual tokens to a single, token-agnostic textual space, TokenCLIP aligns each token with a customized textual subspace that represents its visual characteristics. Explicitly assigning a unique learnable textual space to each token is computationally intractable and prone to insufficient optimization. We instead expand the token-agnostic textual space into a set of orthogonal subspaces, and then dynamically assign each token to a subspace combination guided by semantic affinity, which jointly supports customized and efficient token-wise adaptation. To this end, we formulate dynamic alignment as an optimal transport problem, where all visual tokens in an image are transported to textual subspaces based on semantic similarity. The transport constraints of OT ensure sufficient optimization across subspaces and encourage them to focus on different semantics. Solving the problem yields a transport plan that adaptively assigns each token to semantically relevant subspaces. A top-k masking is then applied to sparsify the plan and specialize subspaces for distinct visual regions. Extensive experiments demonstrate the superiority of TokenCLIP.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: