Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

How to Auto-optimize Prompts for Domain Tasks? Adaptive Prompting and Reasoning through Evolutionary Domain Knowledge Adaptation (2510.21148v1)

Published 24 Oct 2025 in cs.AI

Abstract: Designing optimal prompts and reasoning processes for LLMs on domain-specific tasks is both necessary and challenging in real-world applications. Determining how to integrate domain knowledge, enhance reasoning efficiency, and even provide domain experts with refined knowledge integration hints are particularly crucial yet unresolved tasks. In this research, we propose Evolutionary Graph Optimization for Prompting (EGO-Prompt), an automated framework to designing better prompts, efficient reasoning processes and providing enhanced causal-informed process. EGO-Prompt begins with a general prompt and fault-tolerant initial Semantic Causal Graph (SCG) descriptions, constructed by human experts, which is then automatically refined and optimized to guide LLM reasoning. Recognizing that expert-defined SCGs may be partial or imperfect and that their optimal integration varies across LLMs, EGO-Prompt integrates a novel causal-guided textual gradient process in two steps: first, generating nearly deterministic reasoning guidance from the SCG for each instance, and second, adapting the LLM to effectively utilize the guidance alongside the original input. The iterative optimization algorithm further refines both the SCG and the reasoning mechanism using textual gradients with ground-truth. We tested the framework on real-world public health, transportation and human behavior tasks. EGO-Prompt achieves 7.32%-12.61% higher F1 than cutting-edge methods, and allows small models to reach the performence of larger models at under 20% of the original cost. It also outputs a refined, domain-specific SCG that improves interpretability.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.