Papers
Topics
Authors
Recent
2000 character limit reached

M-GLC: Motif-Driven Global-Local Context Graphs for Few-shot Molecular Property Prediction (2510.21088v1)

Published 24 Oct 2025 in cs.LG and cs.AI

Abstract: Molecular property prediction (MPP) is a cornerstone of drug discovery and materials science, yet conventional deep learning approaches depend on large labeled datasets that are often unavailable. Few-shot Molecular property prediction (FSMPP) addresses this scarcity by incorporating relational inductive bias through a context graph that links molecule nodes to property nodes, but such molecule-property graphs offer limited structural guidance. We propose a comprehensive solution: Motif Driven Global-Local Context Graph for few-shot molecular property prediction, which enriches contextual information at both the global and local levels. At the global level, chemically meaningful motif nodes representing shared substructures, such as rings or functional groups, are introduced to form a global tri-partite heterogeneous graph, yielding motif-molecule-property connections that capture long-range compositional patterns and enable knowledge transfer among molecules with common motifs. At the local level, we build a subgraph for each node in the molecule-property pair and encode them separately to concentrate the model's attention on the most informative neighboring molecules and motifs. Experiments on five standard FSMPP benchmarks demonstrate that our framework consistently outperforms state-of-the-art methods. These results underscore the effectiveness of integrating global motif knowledge with fine-grained local context to advance robust few-shot molecular property prediction.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.