Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 44 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

From Information to Generative Exponent: Learning Rate Induces Phase Transitions in SGD (2510.21020v1)

Published 23 Oct 2025 in cs.LG and stat.ML

Abstract: To understand feature learning dynamics in neural networks, recent theoretical works have focused on gradient-based learning of Gaussian single-index models, where the label is a nonlinear function of a latent one-dimensional projection of the input. While the sample complexity of online SGD is determined by the information exponent of the link function, recent works improved this by performing multiple gradient steps on the same sample with different learning rates -- yielding a non-correlational update rule -- and instead are limited by the (potentially much smaller) generative exponent. However, this picture is only valid when these learning rates are sufficiently large. In this paper, we characterize the relationship between learning rate(s) and sample complexity for a broad class of gradient-based algorithms that encapsulates both correlational and non-correlational updates. We demonstrate that, in certain cases, there is a phase transition from an "information exponent regime" with small learning rate to a "generative exponent regime" with large learning rate. Our framework covers prior analyses of one-pass SGD and SGD with batch reuse, while also introducing a new layer-wise training algorithm that leverages a two-timescales approach (via different learning rates for each layer) to go beyond correlational queries without reusing samples or modifying the loss from squared error. Our theoretical study demonstrates that the choice of learning rate is as important as the design of the algorithm in achieving statistical and computational efficiency.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 37 likes.

Upgrade to Pro to view all of the tweets about this paper: