Papers
Topics
Authors
Recent
2000 character limit reached

Exploring Spiking Neural Networks for Binary Classification in Multivariate Time Series at the Edge (2510.20997v1)

Published 23 Oct 2025 in cs.LG and cs.AI

Abstract: We present a general framework for training spiking neural networks (SNNs) to perform binary classification on multivariate time series, with a focus on step-wise prediction and high precision at low false alarm rates. The approach uses the Evolutionary Optimization of Neuromorphic Systems (EONS) algorithm to evolve sparse, stateful SNNs by jointly optimizing their architectures and parameters. Inputs are encoded into spike trains, and predictions are made by thresholding a single output neuron's spike counts. We also incorporate simple voting ensemble methods to improve performance and robustness. To evaluate the framework, we apply it with application-specific optimizations to the task of detecting low signal-to-noise ratio radioactive sources in gamma-ray spectral data. The resulting SNNs, with as few as 49 neurons and 66 synapses, achieve a 51.8% true positive rate (TPR) at a false alarm rate of 1/hr, outperforming PCA (42.7%) and deep learning (49.8%) baselines. A three-model any-vote ensemble increases TPR to 67.1% at the same false alarm rate. Hardware deployment on the microCaspian neuromorphic platform demonstrates 2mW power consumption and 20.2ms inference latency. We also demonstrate generalizability by applying the same framework, without domain-specific modification, to seizure detection in EEG recordings. An ensemble achieves 95% TPR with a 16% false positive rate, comparable to recent deep learning approaches with significant reduction in parameter count.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.