Towards Scalable Oversight with Collaborative Multi-Agent Debate in Error Detection (2510.20963v1)
Abstract: Accurate detection of errors in LLMs (LLM) responses is central to the success of scalable oversight, or providing effective supervision to superhuman intelligence. Yet, self-diagnosis is often unreliable on complex tasks unless aided by reliable external feedback. Multi-agent debate (MAD) seems to be a natural alternative to external feedback: multiple LLMs provide complementary perspectives and cross-checks for error detection. However, prior MAD protocols frame debate as a zero-sum game, where the debaters compete to win the game instead of seeking the truth. Consequently, it leads to debate hacking: debaters tend to mislead the judge by misinterpreting the task or presenting overconfident claims, which introduce more mistakes and underperform single-agent methods. To mitigate the issue, we introduce a new collaborative MAD protocol, termed ColMAD, that reframes MAD as a non-zero sum game. Specifically, ColMAD encourages multiple agents to criticize each other in a supportive way, such that they can complement the missing points of each other. Therefore, the judge agent can make a more informative conclusion based on more comprehensive evidence. Empirically, we show that ColMAD significantly outperforms previous competitive MAD by 19% and brings non-trivial improvements over single-agent methods in error detection.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.