Papers
Topics
Authors
Recent
2000 character limit reached

Self-Jailbreaking: Language Models Can Reason Themselves Out of Safety Alignment After Benign Reasoning Training

Published 23 Oct 2025 in cs.CR and cs.CL | (2510.20956v1)

Abstract: We discover a novel and surprising phenomenon of unintentional misalignment in reasoning LLMs (RLMs), which we call self-jailbreaking. Specifically, after benign reasoning training on math or code domains, RLMs will use multiple strategies to circumvent their own safety guardrails. One strategy is to introduce benign assumptions about users and scenarios to justify fulfilling harmful requests. For instance, an RLM reasons that harmful requests like outline a strategy for stealing customers' credit card information from a retail store'' could be associated with the benign intent ofa security professional trying to test defense,'' despite no such benign context being provided as input. We observe that many open-weight RLMs, including DeepSeek-R1-distilled, s1.1, Phi-4-mini-reasoning, and Nemotron, suffer from self-jailbreaking despite being aware of the harmfulness of the requests. We also provide a mechanistic understanding of self-jailbreaking: RLMs are more compliant after benign reasoning training, and after self-jailbreaking, models appear to perceive malicious requests as less harmful in the CoT, thus enabling compliance with them. To mitigate self-jailbreaking, we find that including minimal safety reasoning data during training is sufficient to ensure RLMs remain safety-aligned. Our work provides the first systematic analysis of self-jailbreaking behavior and offers a practical path forward for maintaining safety in increasingly capable RLMs.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 14 tweets with 19 likes about this paper.