Papers
Topics
Authors
Recent
2000 character limit reached

Focal Modulation and Bidirectional Feature Fusion Network for Medical Image Segmentation (2510.20933v1)

Published 23 Oct 2025 in cs.CV and cs.AI

Abstract: Medical image segmentation is essential for clinical applications such as disease diagnosis, treatment planning, and disease development monitoring because it provides precise morphological and spatial information on anatomical structures that directly influence treatment decisions. Convolutional neural networks significantly impact image segmentation; however, since convolution operations are local, capturing global contextual information and long-range dependencies is still challenging. Their capacity to precisely segment structures with complicated borders and a variety of sizes is impacted by this restriction. Since transformers use self-attention methods to capture global context and long-range dependencies efficiently, integrating transformer-based architecture with CNNs is a feasible approach to overcoming these challenges. To address these challenges, we propose the Focal Modulation and Bidirectional Feature Fusion Network for Medical Image Segmentation, referred to as FM-BFF-Net in the remainder of this paper. The network combines convolutional and transformer components, employs a focal modulation attention mechanism to refine context awareness, and introduces a bidirectional feature fusion module that enables efficient interaction between encoder and decoder representations across scales. Through this design, FM-BFF-Net enhances boundary precision and robustness to variations in lesion size, shape, and contrast. Extensive experiments on eight publicly available datasets, including polyp detection, skin lesion segmentation, and ultrasound imaging, show that FM-BFF-Net consistently surpasses recent state-of-the-art methods in Jaccard index and Dice coefficient, confirming its effectiveness and adaptability for diverse medical imaging scenarios.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.