Papers
Topics
Authors
Recent
2000 character limit reached

Information Theoretic Learning for Diffusion Models with Warm Start (2510.20903v1)

Published 23 Oct 2025 in cs.IT, cs.LG, and math.IT

Abstract: Generative models that maximize model likelihood have gained traction in many practical settings. Among them, perturbation based approaches underpin many strong likelihood estimation models, yet they often face slow convergence and limited theoretical understanding. In this paper, we derive a tighter likelihood bound for noise driven models to improve both the accuracy and efficiency of maximum likelihood learning. Our key insight extends the classical KL divergence Fisher information relationship to arbitrary noise perturbations, going beyond the Gaussian assumption and enabling structured noise distributions. This formulation allows flexible use of randomized noise distributions that naturally account for sensor artifacts, quantization effects, and data distribution smoothing, while remaining compatible with standard diffusion training. Treating the diffusion process as a Gaussian channel, we further express the mismatched entropy between data and model, showing that the proposed objective upper bounds the negative log-likelihood (NLL). In experiments, our models achieve competitive NLL on CIFAR-10 and SOTA results on ImageNet across multiple resolutions, all without data augmentation, and the framework extends naturally to discrete data.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.