Exponential Convergence Guarantees for Iterative Markovian Fitting (2510.20871v1)
Abstract: The Schr\"odinger Bridge (SB) problem has become a fundamental tool in computational optimal transport and generative modeling. To address this problem, ideal methods such as Iterative Proportional Fitting and Iterative Markovian Fitting (IMF) have been proposed-alongside practical approximations like Diffusion Schr\"odinger Bridge and its Matching (DSBM) variant. While previous work have established asymptotic convergence guarantees for IMF, a quantitative, non-asymptotic understanding remains unknown. In this paper, we provide the first non-asymptotic exponential convergence guarantees for IMF under mild structural assumptions on the reference measure and marginal distributions, assuming a sufficiently large time horizon. Our results encompass two key regimes: one where the marginals are log-concave, and another where they are weakly log-concave. The analysis relies on new contraction results for the Markovian projection operator and paves the way to theoretical guarantees for DSBM.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.