Papers
Topics
Authors
Recent
2000 character limit reached

FPT-Noise: Dynamic Scene-Aware Counterattack for Test-Time Adversarial Defense in Vision-Language Models (2510.20856v1)

Published 22 Oct 2025 in cs.CR

Abstract: Vision-LLMs (VLMs), such as CLIP, have demonstrated remarkable zero-shot generalizability across diverse downstream tasks. However, recent studies have revealed that VLMs, including CLIP, are highly vulnerable to adversarial attacks, particularly on their visual modality. Traditional methods for improving adversarial robustness, such as adversarial training, involve extensive retraining and can be computationally expensive. In this paper, we propose a new Test-Time defense: Feature Perception Threshold Counterattack Noise (FPT-Noise), which enhances the adversarial robustness of CLIP without costly fine-tuning. Our core contributions are threefold: First, we introduce a Dynamic Feature Modulator that dynamically generate an image-specific and attack-adaptive noise intensity parameter. Second, We reanalyzed the image features of CLIP. When images are exposed to different levels of noise, clean images and adversarial images exhibit distinct rates of feature change. We established a feature perception threshold to distinguish clean images from attacked ones. Finally, we integrate a Scene-Aware Regulation guided by a stability threshold and leverage Test-Time Transformation Ensembling (TTE) to further mitigate the impact of residual noise and enhance robustness.Extensive experimentation has demonstrated that FPT-Noise significantly outperforms existing Test-Time defense methods, boosting average robust accuracy from 0.07% to 56.86% under AutoAttack while maintaining high performance on clean images (-1.1%). The code will be made public following the publication of the study. The code will be made public following the publication of the study.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.