Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 418 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Integrated representational signatures strengthen specificity in brains and models (2510.20847v1)

Published 21 Oct 2025 in q-bio.NC and cs.AI

Abstract: The extent to which different neural or artificial neural networks (models) rely on equivalent representations to support similar tasks remains a central question in neuroscience and machine learning. Prior work has typically compared systems using a single representational similarity metric, yet each captures only one facet of representational structure. To address this, we leverage a suite of representational similarity metrics-each capturing a distinct facet of representational correspondence, such as geometry, unit-level tuning, or linear decodability-and assess brain region or model separability using multiple complementary measures. Metrics that preserve geometric or tuning structure (e.g., RSA, Soft Matching) yield stronger region-based discrimination, whereas more flexible mappings such as Linear Predictivity show weaker separation. These findings suggest that geometry and tuning encode brain-region- or model-family-specific signatures, while linearly decodable information tends to be more globally shared across regions or models. To integrate these complementary representational facets, we adapt Similarity Network Fusion (SNF), a framework originally developed for multi-omics data integration. SNF produces substantially sharper regional and model family-level separation than any single metric and yields robust composite similarity profiles. Moreover, clustering cortical regions using SNF-derived similarity scores reveals a clearer hierarchical organization that aligns closely with established anatomical and functional hierarchies of the visual cortex-surpassing the correspondence achieved by individual metrics.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: