Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Balancing Gradient and Hessian Queries in Non-Convex Optimization (2510.20786v1)

Published 23 Oct 2025 in math.OC and cs.DS

Abstract: We develop optimization methods which offer new trade-offs between the number of gradient and Hessian computations needed to compute the critical point of a non-convex function. We provide a method that for any twice-differentiable $f\colon \mathbb Rd \rightarrow \mathbb R$ with $L_2$-Lipschitz Hessian, input initial point with $\Delta$-bounded sub-optimality, and sufficiently small $\epsilon > 0$, outputs an $\epsilon$-critical point, i.e., a point $x$ such that $|\nabla f(x)| \leq \epsilon$, using $\tilde{O}(L_2{1/4} n_H{-1/2}\Delta\epsilon{-9/4})$ queries to a gradient oracle and $n_H$ queries to a Hessian oracle for any positive integer $n_H$. As a consequence, we obtain an improved gradient query complexity of $\tilde{O}(d{1/3}L_2{1/2}\Delta\epsilon{-3/2})$ in the case of bounded dimension and of $\tilde{O}(L_2{3/4}\Delta{3/2}\epsilon{-9/4})$ in the case where we are allowed only a \emph{single} Hessian query. We obtain these results through a more general algorithm which can handle approximate Hessian computations and recovers the state-of-the-art bound of computing an $\epsilon$-critical point with $O(L_1{1/2}L_2{1/4}\Delta\epsilon{-7/4})$ gradient queries provided that $f$ also has an $L_1$-Lipschitz gradient.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 5 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube