Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 418 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Path-Based Conditions for the Identifiability of Non-additive Nonlinear Networks with Full Measurements (2510.20537v1)

Published 23 Oct 2025 in math.OC, cs.SY, and eess.SY

Abstract: We analyze the identifiability of nonlinear networks with node dynamics characterized by functions that are non-additive. We consider the full measurement case (all the nodes are measured) in the path-independent delay scenario where all the excitation signals of a specific node have the same delay in the output of a measured node. Based on the notion of a generic nonlinear matrix associated with the network, we introduce the concept of generic identifiability and characterize the space of functions that satisfies this property. For directed acyclic graphs (DAGs) characterized by analytic functions, we derive a sufficient condition for identifiability based on vertex-disjoint paths from excited nodes to the in-neighbors of each node in the network. Furthermore, when we consider the class of polynomial functions, by using well-known results on algebraic varieties, we prove that the vertex-disjoint path condition is also necessary. Finally, we show that this identifiability condition is not necessary for the additive nonlinear model. Some examples are added to illustrate the results.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: