Multi-Objective Reinforcement Learning with Max-Min Criterion: A Game-Theoretic Approach (2510.20235v1)
Abstract: In this paper, we propose a provably convergent and practical framework for multi-objective reinforcement learning with max-min criterion. From a game-theoretic perspective, we reformulate max-min multi-objective reinforcement learning as a two-player zero-sum regularized continuous game and introduce an efficient algorithm based on mirror descent. Our approach simplifies the policy update while ensuring global last-iterate convergence. We provide a comprehensive theoretical analysis on our algorithm, including iteration complexity under both exact and approximate policy evaluations, as well as sample complexity bounds. To further enhance performance, we modify the proposed algorithm with adaptive regularization. Our experiments demonstrate the convergence behavior of the proposed algorithm in tabular settings, and our implementation for deep reinforcement learning significantly outperforms previous baselines in many MORL environments.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.