Papers
Topics
Authors
Recent
2000 character limit reached

Risk-Averse Constrained Reinforcement Learning with Optimized Certainty Equivalents (2510.20199v1)

Published 23 Oct 2025 in cs.LG

Abstract: Constrained optimization provides a common framework for dealing with conflicting objectives in reinforcement learning (RL). In most of these settings, the objectives (and constraints) are expressed though the expected accumulated reward. However, this formulation neglects risky or even possibly catastrophic events at the tails of the reward distribution, and is often insufficient for high-stakes applications in which the risk involved in outliers is critical. In this work, we propose a framework for risk-aware constrained RL, which exhibits per-stage robustness properties jointly in reward values and time using optimized certainty equivalents (OCEs). Our framework ensures an exact equivalent to the original constrained problem within a parameterized strong Lagrangian duality framework under appropriate constraint qualifications, and yields a simple algorithmic recipe which can be wrapped around standard RL solvers, such as PPO. Lastly, we establish the convergence of the proposed algorithm under common assumptions, and verify the risk-aware properties of our approach through several numerical experiments.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.