Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Compositional Generation for Long-Horizon Coupled PDEs (2510.20141v1)

Published 23 Oct 2025 in stat.ML and cs.LG

Abstract: Simulating coupled PDE systems is computationally intensive, and prior efforts have largely focused on training surrogates on the joint (coupled) data, which requires a large amount of data. In the paper, we study compositional diffusion approaches where diffusion models are only trained on the decoupled PDE data and are composed at inference time to recover the coupled field. Specifically, we investigate whether the compositional strategy can be feasible under long time horizons involving a large number of time steps. In addition, we compare a baseline diffusion model with that trained using the v-parameterization strategy. We also introduce a symmetric compositional scheme for the coupled fields based on the Euler scheme. We evaluate on Reaction-Diffusion and modified Burgers with longer time grids, and benchmark against a Fourier Neural Operator trained on coupled data. Despite seeing only decoupled training data, the compositional diffusion models recover coupled trajectories with low error. v-parameterization can improve accuracy over a baseline diffusion model, while the neural operator surrogate remains strongest given that it is trained on the coupled data. These results show that compositional diffusion is a viable strategy towards efficient, long-horizon modeling of coupled PDEs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 10 likes.

Upgrade to Pro to view all of the tweets about this paper: