Papers
Topics
Authors
Recent
2000 character limit reached

Coupled Transformer Autoencoder for Disentangling Multi-Region Neural Latent Dynamics (2510.20068v1)

Published 22 Oct 2025 in cs.LG

Abstract: Simultaneous recordings from thousands of neurons across multiple brain areas reveal rich mixtures of activity that are shared between regions and dynamics that are unique to each region. Existing alignment or multi-view methods neglect temporal structure, whereas dynamical latent variable models capture temporal dependencies but are usually restricted to a single area, assume linear read-outs, or conflate shared and private signals. We introduce the Coupled Transformer Autoencoder (CTAE) - a sequence model that addresses both (i) non-stationary, non-linear dynamics and (ii) separation of shared versus region-specific structure in a single framework. CTAE employs transformer encoders and decoders to capture long-range neural dynamics and explicitly partitions each region's latent space into orthogonal shared and private subspaces. We demonstrate the effectiveness of CTAE on two high-density electrophysiology datasets with simultaneous recordings from multiple regions, one from motor cortical areas and the other from sensory areas. CTAE extracts meaningful representations that better decode behavioral variables compared to existing approaches.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.